线程池的实现原理
当向线程池提交一个任务之后,线程池是如何处理这个任务的呢?本节来看一下线程池的主要处理流程,处理流程图如图所示。
从图中可以看出,当提交一个新任务到线程池时,线程池的处理流程如下。
- 线程池判断核心线程池里的线程是否都在执行任务。如果不是,则创建一个新的工作线程来执行任务。如果核心线程池里的线程都在执行任务,则进入下个流程。
- 线程池判断工作队列是否已经满。如果工作队列没有满,则将新提交的任务存储在这个工作队列里。如果工作队列满了,则进入下个流程。
- 线程池判断线程池的线程是否都处于工作状态。如果没有,则创建一个新的工作线程来执行任务。如果已经满了,则交给饱和策略来处理这个任务。
ThreadPoolExecutor执行execute()方法的示意图,如图所示
"ThreadPoolExecutor执行execute方法分下面4种情况:
- 如果当前运行的线程少于corePoolSize,则创建新线程来执行任务(注意,执行这一步骤需要获取全局锁)。
- 如果运行的线程等于或多于corePoolSize,则将任务加入BlockingQueue。
- 如果无法将任务加入BlockingQueue(队列已满),则创建新的线程来处理任务(注意,执行这一步骤需要获取全局锁)。
- 如果创建新线程将使当前运行的线程超出maximumPoolSize,任务将被拒绝,并调用RejectedExecutionHandler.rejectedExecution()方法。
线程池的使用
线程池的创建
1 | ThreadPoolExecutor(int corePoolSize, |
创建一个线程池时需要输入几个参数,如下:
corePoolSize(线程池的基本大小):当提交一个任务到线程池时,线程池会创建一个线程来执行任务,即使其他空闲的基本线程能够执行新任务也会创建线程,等到需要执行的任务数大于线程池基本大小时就不再创建。如果调用了线程池的prestartAllCoreThreads()方法,线程池会提前创建并启动所有基本线程。
runnableTaskQueue(任务队列):用于保存等待执行的任务的阻塞队列。可以选择以下几 个阻塞队列:
ArrayBlockingQueue:是一个基于数组结构的有界阻塞队列,此队列按FIFO(先进先出)原 则对元素进行排序。
LinkedBlockingQueue:一个基于链表结构的阻塞队列,此队列按FIFO排序元素,吞吐量通常要高于ArrayBlockingQueue。静态工厂方法Executors.newFixedThreadPool()使用了这个队列。
SynchronousQueue:一个不存储元素的阻塞队列。每个插入操作必须等到另一个线程调用移除操作,否则插入操作一直处于阻塞状态,吞吐量通常要高于Linked-BlockingQueue,静态工厂方法Executors.newCachedThreadPool使用了这个队列。
PriorityBlockingQueue:一个具有优先级的无限阻塞队列。maximumPoolSize(线程池最大数量):线程池允许创建的最大线程数。如果队列满了,并且已创建的线程数小于最大线程数,则线程池会再创建新的线程执行任务。值得注意的是,如果使用了无界的任务队列这个参数就没什么效果。
ThreadFactory:用于设置创建线程的工厂,可以通过线程工厂给每个创建出来的线程设置更有意义的名字。使用开源框架guava提供的ThreadFactoryBuilder可以快速给线程池里的线 程设置有意义的名字,代码如下。
1 | new ThreadFactoryBuilder().setNameFormat("XX-task-%d").build(); |
RejectedExecutionHandler(饱和策略):当队列和线程池都满了,说明线程池处于饱和状 态,那么必须采取一种策略处理提交的新任务。这个策略默认情况下是AbortPolicy,表示无法 处理新任务时抛出异常。在JDK1.5中Java线程池框架提供了以下4种策略。
·AbortPolicy:直接抛出异常。
·CallerRunsPolicy:只用调用者所在线程来运行任务。
·DiscardOldestPolicy:丢弃队列里最近的一个任务,并执行当前任务。
·DiscardPolicy:不处理,丢弃掉。
当然,也可以根据应用场景需要来实现RejectedExecutionHandler接口自定义策略。keepAliveTime(线程活动保持时间):线程池的工作线程空闲后,保持存活的时间。所以,如果任务很多,并且每个任务执行的时间比较短,可以调大时间,提高线程的利用率。
TimeUnit(线程活动保持时间的单位):可选的单位有天(DAYS)、小时(HOURS)、分钟(MINUTES)、毫秒(MILLISECONDS)、微秒(MICROSECONDS,千分之一毫秒)和纳秒(NANOSECONDS,千分之一微 秒)。
向线程池提交任务
可以使用两个方法向线程池提交任务,分别为execute()和submit()方法
execute()方法用于提交不需要返回值的任务,所以无法判断任务是否被线程池执行成功。通过以下代码可知execute()方法输入的任务是一个Runnable类的实例。
1 | threadsPool.execute(new Runnable() { |
submit()方法用于提交需要返回值的任务。线程池会返回一个future类型的对象,通过这个future对象可以判断任务是否执行成功,并且可以通过future的get()方法来获取返回值,get()方法会阻塞当前线程直到任务完成,而使用get(long timeout,TimeUnit unit)方法则会阻塞当前线程一段时间后立即返回,这时候有可能任务没有执行完。
1 | Future<Object> future = executor.submit(harReturnValuetask); |
合理地配置线程池
要想合理地配置线程池,就必须首先分析任务特性,可以从以下几个角度来分析。
- ·任务的性质:CPU密集型任务、IO密集型任务和混合型任务。
- ·任务的优先级:高、中和低。
- ·任务的执行时间:长、中和短。
- ·任务的依赖性:是否依赖其他系统资源,如数据库连接。
性质不同的任务可以用不同规模的线程池分开处理。
CPU密集型任务应配置尽可能小的线程,如配置Ncpu+1个线程的线程池。
由于IO密集型任务线程并不是一直在执行任务,则应配置尽可能多的线程,如2*Ncpu。
混合型的任务,如果可以拆分,将其拆分成一个CPU密集型任务和一个IO密集型任务,只要这两个任务执行的时间相差不是太大,那么分解后执行的吞吐量将高于串行执行的吞吐量。如果这两个任务执行时间相差太大,则没必要进行分解。可以通过Runtime.getRuntime().availableProcessors()方法获得当前设备的CPU个数优先级不同的任务可以使用优先级队列PriorityBlockingQueue来处理。它可以让优先级高 的任务先执行。
依赖数据库连接池的任务,因为线程提交SQL后需要等待数据库返回结果,等待的时间越
长,则CPU空闲时间就越长,那么线程数应该设置得越大,这样才能更好地利用CPU建议使用有界队列。有界队列能增加系统的稳定性和预警能力,可以根据需要设大一点
儿,比如几千。